Thursday, October 19, 2017

Metal acetylene complexes


Metal acetylene complexes


In organometallic chemistry, a transition metal alkyne complex is a coordination compound containing one or more alkyne ligands. Such compounds are intermediates in many catalytic reactions that convert alkynes to other organic products, e.g. hydrogenation and trimerization

 Transition metal alkyne complexes are often formed by the displacement of labile ligands by the alkyne. For example, a variety of cobalt-alkyne complexes may be formed by reaction of the alkyne with dicobalt octacarbonyl.
Co2(CO)8 + R2C2 → Co2(C2R2)(CO)6 + 2 CO
Many alkyne complexes are produced by reduction of metal halides, e.g. titanocene dichloride and bis(triphenylphosphine)platinum dichloride in the presence of the alkyne:
Cp2TiCl2 + C2R2 + Mg → Cp2Ti(C2R2) + MgCl2
 The coordination of alkynes to transition metals is similar to that of alkenes. The bonding is described by the Dewar-Chatt-Duncanson model. Upon complexation the C-C bond elogates and the alkynyl carbon bends away from 180º. For example, in the phenylpropyne complex Pt(PPh3)2(C2)Ph(Me), the C-C distance is 1.277(25) vs 1.20 Å for a typical alkyne. The C-C-C angle distorts 40° from linearity.  Because the bending induced by complexation, strained alkynes such as cycloheptyne and cyclooctyne are stabilized by complexation
In the IR spectra, the C-C vibration of alkynes, which occurs near 2300 cm−1, shifts upon complexation to around 1800 cm−1, indicating a weakening of the C-C bond.

η2-coordination to a single metal center

When bonded side-on to a single metal atom, an alkyne serves as a dihapto usually two-electron donor. For early metal complexes, e.g., Cp2Ti(C2R2), strong π-backbonding into one of the π* antibonding orbitals of the alkyne is indicated. This complex is described as a metallacyclopropene derivative of Ti(IV). For late transition metal complexes, e.g., Pt(PPh3)2(MeC2Ph), the π-backbonding is less prominent, and the complex is assigned oxidation state (0).
In some complexes, the alkyne is classified as a four-electron donor. In these cases, both pairs of pi-electrons donate to the metal. This kind of bonding was first implicated in complexes of the type W(CO)(R2C2)3.

η2, η2-coordination bridging two metal centers

Because alkynes have two π bonds, alkynes can form stable complexes in which they bridge two metal centers. The alkyne donates a total of four electrons, with two electrons donated to each of the metals. And example of a complex with this bonding scheme is η2-diphenylacetylene-(hexacarbonyl)dicobalt(0).
Benzyne complexes
Transition metal benzyne complexes represent a special case of alkyne complexes since the free benzynes are not stable in the absence of the metal.
Applications
Metal alkyne complexes are intermediates in the semihydrogenation of alkynes to alkenes:
C2R2 + H2 → cis-C2R2H2
This transformation is conducted on a large scale in refineries, which unintentionally produce acetylene during the production of ethylene. It is also useful in the preparation of fine chemicals. Semihydrogenation affords cis alkenes.
Metal-alkyne complexes are also intermediates in the metal-catalyzed trimerization and tetramerizations. Cyclooctatetraene is produced from acetylene via the intermediacy of metal alkyne complexes. Variant of this reaction are exploited for the synthesis of substituted pyridines.
The Pauson-Khand reaction provides a route to cyclopentenones via the intermediacy of cobalt-alkyne complexes.
With the shift away from coal-based (acetylene) to petroleum-based feedstocks (olefins), catalytic reactions with alkynes are not widely practiced industrially. Acrylic acid was once prepared by the hydrocarboxylation of acetylene:
C2H2 + H2O + CO → H2C=CHCO2H











Wednesday, October 18, 2017

Metal Olefin Complexes

  1. https://drive.google.com/file/d/0BygsoAhFInJONndjaS1GTndYbTg/view?usp=sharing

  2. https://www.youtube.com/watch?v=Osn2zrRJu5g

  3. https://drive.google.com/file/d/0BygsoAhFInJOLWNESXRSTjAwdmM/view?usp=sharing

  4. https://drive.google.com/file/d/0BygsoAhFInJOQXQwZ2JWM1pyekE/view?usp=sharing

  5. https://drive.google.com/file/d/0BygsoAhFInJOdHRxM3QwcWRDQ2c/view?usp=sharing


General Information

Alkene or olefin ligands are common in organotransition metal chemistry. In fact, the first organotransition metal complex, Zeise's salt (K[PtCl3(C2H4]·H2O) was an alkene complex although its true nature was not unambiguously determined until about 100 years after its discovery.

Bonding and Structure in Alkene Complexes

The bonding in alkene complexes is described by the Dewar-Chatt-Duncanson model, which provides us with a bonding picture not unlike that seen in carbonyl or phosphine complexes. A sigma-type donation from the C=C pi orbital with concomitant pi-backbonding into an empty pi* orbital on the ethylene presents us with a synergistic bonding situation: the greater the sigma donation to the metal, the greater the pi-backbonding:

The greater the electron density back-donated into the pi* orbital on the alkene, the greater the reduction in the C=C bond order. An alternative way of stating this would be to say that the hybridization of the alkene carbon changes from sp2 to sp3 as back-donation increases. Either formalism describes two limiting structures: a planar olefin adduct and a metallocyclopropane. X-ray crystallographic studies confirm that the as the C-C bond length increases, the CH2 plane is distorted from the ideal planar geometry of an alkene:


The structural distortion of a bound alkene can also be detected by NMR: the JCH of alkene-like sp2 carbons is typically around 160 Hz whereas sp3-like carbons have a JCH around 120 Hz. Unlike carbonyl stretching frequencies, the C=C IR band (around 1500 cm-1) is usually weak and not well-correlated to C-C bond length.Electronic factors play a large role in the binding of alkenes to transition metals. For example, tetrafluoroethylene will bind more tightly than ethylene to a low valent metal complex because the presence of electron-withdrawing groups on the olefin results in poorer sigma donation and lowers the energy of the pi* orbital (providing better overlap for backbonding). Likewise, ethylene (like carbon monoxide) is a poor ligand for d0 metal complexes because there are no d-electrons to engage in back-bonding.
The stability of alkene complexes also depends on steric factors as well. An empirical ordering of relative stability would be:

tetrasubstituted < trisubstituted < trans-disubstituted < cis-disubstituted < monosubstituted < ethylene.

Synthesis of Alkene Complexes

Alkene complexes can be synthesized by several methods:
  1. Ligand substitution reactions.
  2. Reduction of a higher valent metal in the presence of an alkene.
  3. From alkyls and related species:
vvReactions of Alkene Complexes
The bonding of an alkene to a transition metal can activate the ligand to electrophilic or nucleophilic attack depending on the nature and charge of the metal center. For example, if there is a high formal charge on the metal center then the olefin is subject to attack by nucleophiles at the face opposite the metal (giving trans addition). Likewise, electron rich metal centers in low oxidation states are activated for attack by electrophiles at the C-C bond.The reaction chemistry of these complexes is quite broad and could form another textbook in itself. For some other examples of alkene reactivity look at the sections on olefin metathesis, olefin polymerization and insertion reactions.If the metal to ligand π−back donation component is smaller than the ligand to metal σ−donation, then the lengthening of the C−C bond in the metal bound olefin moiety is observed. This happens primarily because of the fact that the alkene to metal σ−donation removes the C=C π−electrons away from the C−C bond of the olefin moiety and towards the metal center, thus, decreasing its bond order and increasing the C−C bond length. Additionally, as the metal to ligand π−back donation increases, the electron donation of the filled metal dπ orbital on to the π* orbital of the metal bound olefin moiety is
enhanced. This results in an increase in the C−C bond length. The lengthening of the C−C bond in metal bound olefin complex can be correlated to the π−basicity of the metal. For example, for a weak π−basic metal, the C−C bond lengthening is anticipated to be small while for a strong π−basic metal, the C−C lengthening would be significant. Another implication of ligand−metal π−back donation is in the observed change of hybridization at the olefinic C atoms from pure sp2, in complexes with no metal to ligand π−back donation, to sp3, in complexes with significant metal to ligand π−back donation, is observed. The change in hybridization from sp2 to sp3 centers of the olefinic carbon is accompanied by the substituents being slightly bent away from the metal center in the final metalacyclopropane form (Figure 3). This change in hybridization can be conveniently detected by 1H and 13C NMR spectroscopy. For example, in case of the metalacyclopropane systems, which have strong metal to ligand π−back donation, the vinyl protons appear 5 ppm (in the 1H NMR) and 100 ppm (in the 13C NMR) high field with respect to the respective position of the free ligands.
An interesting fallout of the metal to ligand π−back bonding is the tighter binding of the strained olefins to the metal center as observed in the case of cyclopropene and norbornene. The strong binding of these cyclopropene and norbornene moieties to the metal center arise out of the relief of ring strain upon binding to the metal. Lastly, in the metal−olefin complexes having very little π−back bonding component, the chemical reactivities of the metal bound olefin appear opposite to that of a free olefin. For example, a free olefin is considered electron rich by virtue of the presence of π−electrons in its outermost valence orbital and hence it undergoes an electrophilic attack. However, the metal bound olefin complexes having predominantly σ−donation of the olefinic π−electrons and negligible metal to ligand π−back donation, the olefinic C becomes positively charged and hence undergoes a nuclophilic attack. This nature of reversal of olefin reactivity is called umpolung character.
some evidenceSynthesis Metal alkene complexes are synthesized by the following methods.
i. Substitution in low valent metals
ii. Reduction of high valent metal in presence of an alkene
iii. From alkyls and related species
Reaction of alkenes The metal alkene complexes show the following reactivities. i. Insertion reaction These reactions are commonly displayed by alkenes as they insert into metal−X bonds yielding metal alkyls. The reaction occurs readily at room temperature for X = H, whereas for other elements (X = other atoms), such insertions become rare. Also, the strained alkenes and alkynes undergo such insertion readily.
ii. Umpolung reactions
Umpolung reactions are observed only for those metal−alkene complexes for which the metal center is a poor π−base and as a result of which the olefin undergoes a nuclophilic attack.

iii. Oxidative addition
Alkenes containing allylic hydrogens undergo oxidative addition to give a allyl hydride complex


    • Reactions of Alkene Complexes
      The bonding of an alkene to a transition metal can activate the ligand to electrophilic or nucleophilic attack depending on the nature and charge of the metal center. For example, if there is a high formal charge on the metal center then the olefin is subject to attack by nucleophiles at the face opposite the metal (giving trans addition). Likewise, electron rich metal centers in low oxidation states are activated for attack by electrophiles at the C-C bond.The reaction chemistry of these complexes is quite broad and could form another textbook in itself. For some other examples of alkene reactivity look at the sections on olefin metathesis, olefin polymerization and insertion reactions.If the metal to ligand π−back donation component is smaller than the ligand to metal σ−donation, then the lengthening of the C−C bond in the metal bound olefin moiety is observed. This happens primarily because of the fact that the alkene to metal σ−donation removes the C=C π−electrons away from the C−C bond of the olefin moiety and towards the metal center, thus, decreasing its bond order and increasing the C−C bond length. Additionally, as the metal to ligand π−back donation increases, the electron donation of the filled metal dπ orbital on to the π* orbital of the metal bound olefin moiety is
      enhanced. This results in an increase in the C−C bond length. The lengthening of the C−C bond in metal bound olefin complex can be correlated to the π−basicity of the metal. For example, for a weak π−basic metal, the C−C bond lengthening is anticipated to be small while for a strong π−basic metal, the C−C lengthening would be significant. Another implication of ligand−metal π−back donation is in the observed change of hybridization at the olefinic C atoms from pure sp2, in complexes with no metal to ligand π−back donation, to sp3, in complexes with significant metal to ligand π−back donation, is observed. The change in hybridization from sp2 to sp3 centers of the olefinic carbon is accompanied by the substituents being slightly bent away from the metal center in the final metalacyclopropane form (Figure 3). This change in hybridization can be conveniently detected by 1H and 13C NMR spectroscopy. For example, in case of the metalacyclopropane systems, which have strong metal to ligand π−back donation, the vinyl protons appear 5 ppm (in the 1H NMR) and 100 ppm (in the 13C NMR) high field with respect to the respective position of the free ligands.
      An interesting fallout of the metal to ligand π−back bonding is the tighter binding of the strained olefins to the metal center as observed in the case of cyclopropene and norbornene. The strong binding of these cyclopropene and norbornene moieties to the metal center arise out of the relief of ring strain upon binding to the metal. Lastly, in the metal−olefin complexes having very little π−back bonding component, the chemical reactivities of the metal bound olefin appear opposite to that of a free olefin. For example, a free olefin is considered electron rich by virtue of the presence of π−electrons in its outermost valence orbital and hence it undergoes an electrophilic attack. However, the metal bound olefin complexes having predominantly σ−donation of the olefinic π−electrons and negligible metal to ligand π−back donation, the olefinic C becomes positively charged and hence undergoes a nuclophilic attack. This nature of reversal of olefin reactivity is called umpolung character.
      Synthesis Metal alkene complexes are synthesized by the following methods.
      i. Substitution in low valent metals
      ii. Reduction of high valent metal in presence of an alkene
      iii. From alkyls and related species
      Reaction of alkenes The metal alkene complexes show the following reactivities. i. Insertion reaction These reactions are commonly displayed by alkenes as they insert into metal−X bonds yielding metal alkyls. The reaction occurs readily at room temperature for X = H, whereas for other elements (X = other atoms), such insertions become rare. Also, the strained alkenes and alkynes undergo such insertion readily.
      ii. Umpolung reactions
      Umpolung reactions are observed only for those metal−alkene complexes for which the metal center is a poor π−base and as a result of which the olefin undergoes a nuclophilic attack.

      iii. Oxidative addition
      Alkenes containing allylic hydrogens undergo oxidative addition to give a allyl hydride complex



          Syllabus


          Syllabus


          Unit 1: Organometallic Compounds-Synthesis, Structure and Bonding                                      (18 Hours)
          1. Organometallic compounds with linear pi donor ligands- synthesis, structure and bonding.
          1. olefins,
          2. acetylenes,
          3. dienes
          4. allyl complexes


          2. Complexes with cyclic pi donors  structure and bonding

          1. metallocenes
          2. cyclic arene complexes .

          3. Hapto nomenclature.

          4.Carbene and carbyne complexes.

          5.Preparation, properties, structure and bonding of simple mono and binuclear metal carbonyls

          6.Preparation, properties, structure and bonding of metal nitrosyls
          7.Preparation, properties, structure and bonding of metal cyanides
          8. Preparation, properties, structure and bonding of dinitrogen complexes.

          9. Polynuclear metal carbonyls with and without bridging.

          10. Carbonyl clusters-LNCCS and HNCCS,

          11. Isoelectronic and isolobal analogy,

          12 .Wade-Mingos rules, cluster valence electrons.










          sem 3 notes

          Chains – catenation, https://drive.google.com/open?id=0BygsoAhFInJONzVVU0N3d21DNUE  heterocatenation.  Silicate minerals.  https://dr...